

RUVAC Roots Vacuum Pumps

Single-Stage 250 - 13 000 m³ x h⁻¹ (147 - 7657 cfm)

173.01.02 Excerpt from the Oerlikon Leybold Vacuum Full Line Catalog Product Section C07 Edition May 2007

Contents

General

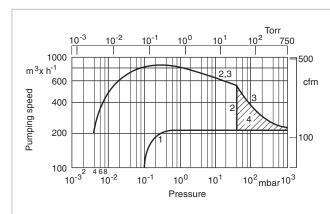
Applications and Accessories)3
General Information on Roots Vacuum Pumps	Э4
Products	
RUVAC WA/WAU Roots Vacuum Pumps with Air-Cooled Flange-Mounted Motors	10
RUVAC WS/WSU Roots Vacuum Pumps with Air-Cooled Canned Motors	16
RUVAC WS/WSU (W) PFPE Roots Vacuum Pumps with Water-Cooled Canned Motors	22
RUVAC WSLF Roots Vacuum Pumps for Laser Gas Systems	28
RUVAC RA Roots Vacuum Pumps with Flange-Mounted Motors	30
Accessories	
Pressure Switches	34
Temperature Sensor PT 100	34
Miscellaneous	
Vacuum Pump Oils	35
Services CO7 4	40

General

Applications and Accessories

Roots Vacuum Roots Pumps Applications		nan ^l	e la	iel new	Jun Peter	QF
Applications						
Semiconductor production						
Vacuum coating						•
Large scale research			•			•
Chemistry/Pharmaceutical						•
Metallurgy/Furnacess		•	•			•
Lamps and tubes manufacture			•			
Laser engineering					•	
Packaging						
Central vacuum supply systems			•			
Freeze drying			•			
Leak testing systems			•			
Electrical engineering			•			•
High purity gases/closed refrigerant cycl	es				•	
Mechanical engineering		•	•	•	•	•
Automotive industry		•	•	•	•	•
Accessories	Page					
Frequency inverter RUVATRONIC RT	C07.09	•	•	•	•	
Pressure switches	C07.34	•	•	•	•	•
Temperature sensor PT 100	C07.34	1)				

¹⁾ For ATEX pumps only

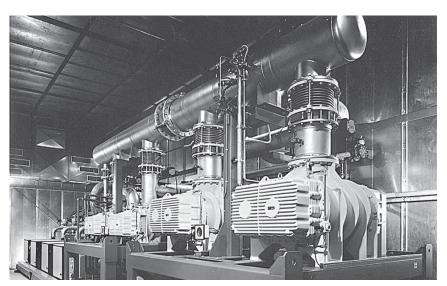

General Information on Roots Vacuum Pumps

Applications

For many years now Roots vacuum pumps have been well established in the area of vacuum technology. In combination with backing pumps, which compress against the atmosphere, these pumps offer the following advantages:

Shifting the Operating Pressure into the High Vacuum Range

As a rule of the thumb one may say that Roots vacuum pumps are capable of improving the attainable ultimate pressure of a pump system by a factor of 10. With two Roots vacuum pump stages and a corresponding backing pump it is possible to attain pressures in the range down to 10⁻⁵ mbar (0.75 x 10⁻⁵ Torr). Under certain circumstances this will make the use of additional high vacuum pumps (turbomolecular pumps or diffusion pumps) unnecessary.


- 1 Pumping speed of the backing pump
- 2 Pumping speed of the Roots pump system without pressure equalization line
- 3 Pumping speed of the Roots pump system with pressure equalization line
- 4 Pumping speed gained by the pressure equalization line

Comparison of pumping speed characteristics with and without pressure equalization line

Multiplied Pumping Speed

Due to the non-contact rotation of the impellers, Roots vacuum pumps are able to run at higher speeds. Thus a high pumping speed is obtained with a relatively small size pump. Pumping speeds in excess of 1000 m³/h (589 cfm) can only be attained with Roots vacuum pumps.

When selecting the right kind of backing pump (sizing) it will be possible to pump large quantities of gas in connection with smaller backing pumps. Energy consumption of such a pump system is much less compared to a single backing pump offering the same pumping speed.

Pump system with RA Roots vacuum pumps

The use of Roots vacuum pumps in the area of vacuum technology has resulted in further specializations and improvements:

- Through an integrated bypass (pressure equalization line) it is also possible to utilize the pumping speed of the Roots vacuum pump at high pressures and large quantities of gas at an early stage. This reduces the pumpdown time especially for cyclic operation (see figure "Comparison of pumping speed characteristics with and without pressure equalization line").
- High-purity gases or hazardous gases impose strict requirements on the leak-tightness of the system. Canned motors are hermetically sealed. There are no seals in

- contact with the atmosphere which might be subject to wear. This prevents leaks and failures due to oil leaks. A service life of over 20000 hours without maintenance is quite common.
- Tolerances and the quality of the balancing combined with forcefed lubricated bearings and toothed gears permit high speeds and the use of frequency converters. Thus it is possible to attain a high pumping speed while the process is in progress and to reduce the speed when the process has been stopped or while changing the batch. This results in a lower consumption of energy and a longer service life with uncompromised reliability.
- Conversion from vertical to horizontal flow is easily implemented and can be performed at the place where the pump has been installed. Thus the pump can be adapted more closely to the operating conditions of your system.

Lately, a further characteristic is gaining prominence: Roots vacuum pumps are capable of compressing the media in the pump chamber without the presence of any further media. This mostly avoids interaction between different media in the pump itself and also in the connected vacuum chamber. Therefore

- the medium which is pumped is not contaminated with lubricants or sealants; complex accessories (exhaust filters, separators, etc.) are not needed:
- the lubricant in the side chambers is hardly affected, so that service life is not reduced;
- backstreaming of oil from the backing pump into the connected vacuum chamber is prevented.

The effective air cooling arrangement reduces operating costs to a minimum. Cooling water is not required.

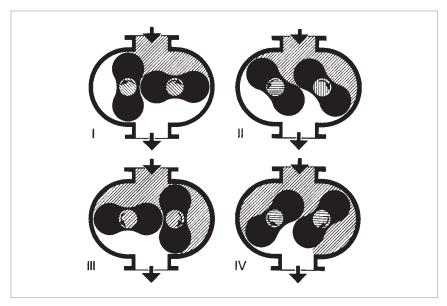
These characteristics make the Roots vacuum pump attractive for almost all rough and medium vacuum applications.

Pump system with RA Roots vacuum pump and SOGEVAC rotary vane vacuum pump

Semiconductor Technology

In the area of semiconductor technology, Roots vacuum pumps are found in etching processes among others, and in use with dry compressing vacuum pumps.

The pumping speed of the combination of backing pumps amounts to 200 to 500 m³/h (118 to 295 cfm) and it ensures a cut-in pressure of 10^{-1} mbar (0.75 x 10^{-1} Torr) for the turbomolecular pump. In the case of dry compression, corrosive gases which also have a high particulate content must be pumped.


Canned motors and PFPE fluids provide a good seal against the outside and allow long periods between servicing, high reliability and thus very low operating costs (WS PFPE types).

Specific suitable for this processes and use in clean rooms are Roots vacuum pumps filled with PFPE and watercooled motors.

These kind of motor has only a little heat dissipatoion.

Central Vacuum Supply Systems

Large Roots vacuum pumps, usually in connection with single-stage rotary vane vacuum pumps serve several consumers of vacuum (packaging machines, for example) at the same time.

Operational diagram of a single-stage Roots vacuum pump (with vertical pumping action)

Due to the uncontrolled influx of gas, a high of pumping speed must be attained quickly, in order to keep the vacuum (1 to 30 mbar (0.75 to 22.5 Torr)) permanently available to all consumers. This in particular, is implemented by Roots vacuum pumps having a pressure equalization line (WAU types).

Chemistry

Replacement of vapor jet or gas jet pumps on liquid ring pumps in drying and distillation plants is necessary for attaining the required operating pressure of about 1 mbar (0.75 Torr). Reduction of operating costs by entirely eliminating vapor or gas quantities includes separation of these on the pressure side (WA and RA types).

Laser Systems

Continuous circulation of the gas in order to remove heat from a closed cycle in which pressure differentials of up to 100 mbar (75 Torr) must be maintained. The tough requirements regarding purity necessitate a total absence of contamination by oil and dust. This is ensured by reducing the pressure level in the oil chambers as well as by coating the pump chamber. The pumps are assembled and tested under clean room conditions.

The canned motor ensures a high degree of leak-tightness to the outside and permits operation in connection with a frequency converter (WSLF types).

Operating Principle

Roots vacuum pumps, which are also called Roots blowers, are rotary plunger type pumps where two symmetrically shaped impellors rotate in opposite directions inside the pump housing.

The figure-of-eight rotors are synchronized by a gear which ensures that the impellors are counter-rotating in such a way, that they are near to one another and to the housing without actual contacting.

In rotor positions I and II (see figure "Operational diagram of a single-stage Roots vacuum pump (with vertical pumping action)") the volume of the intake is increased. As the rotors turn further to position III a part of the volume is cut off from the intake side.

In position IV this volume is opened to the exhaust side and gas under forevacuum pressure (higher than the intake pressure) flows in. This gas compresses the gas coming from the intake. As the rotors turn further the compressed gas is ejected through the exhaust flange.

This process repeats itself twice for each rotor per full turn.

As the rotors do not come into contact with the pump's housing Roots vacuum pumps may be operated at high speeds. Thus a high pumping speed is obtained from comparably small pumps.

The pressure difference and the compression ratio between intake and exhaust is limited in Roots vacuum pumps.

In practice the maximum attainable pressure difference is of significance only in the rough vacuum range (p > 10 mbar (p > 7.5 Torr)) where-asin the medium vacuum range (p < 1 mbar (p < 0.75 Torr)) the attainable compression ratio is of importance.

Roots vacuum pumps from Oerlikon Leybold Vacuum have been designed to specially meet the requirements of the fine vacuum range. They are normally used in connection with backing pumps (exception RAV) or in closed gas cycles (WSLF series).

Design

The pump chamber of Roots vacuum pumps is free of any sealing agents or lubricants. Only the toothed wheels of the synchronous gear are lubricated with oil. Toothed gear wheels and bearings of the RUVAC are placed in two side chambers which also contain the oil reservoir. These two side chambers are separated from the pump chamber by piston ring seals.

Suitably designed oil supply systems in both chambers ensure that a sufficient quantity of oil is supplied to the gear wheels and bearings at all permissible

Almost all RUVAC Roots vacuum pumps are designed for a horizontal and vertical pumping action.

Pump system consisting of RUVAC WAU 1001 and SOGEVAC SV 200

lypes

Various types of Roots vacuum pumps have been developed to ensure optimum adaptation to the widely varying applications for this type of pump.

Flange mounted motor

The drive shaft of the pump is directly connected to an electric motor via a flexible coupling. The required seal of the drive shaft against at-mospheric pressure is obtained by oiled shaft seals.

Canned motor

In the canned motor, rotor and stator pack are separated by a vacuum-tight can made of a nonmagnetic material. The rotor operates on the drive shaft of the pump in the vacuum, so that a shaft seal which would be subject to wear is not required.

Pressure equalization line

The integrated pressure equalization line connects the exhaust flange to the intake flange through a differential pressure valve.

This valve opens at a high pressure differential between the flanges. Part of the gas then flows through this line back to the intake flange. This is why the Roots vacuum pump may be switched on at atmospheric pressure together with the backing pump. This also increases the pumping speed of the pump combination at high intake pressu-

Special ACE vibration absorber

These pumps are best used in applications involving frequent pumpdown cycles. The vibration absorber is of an oil sealed or filled design where minute amounts of oil may enter the vacuum system via the piston of the vibration attenuator.

RUVAC WA/WAU, WS/WSU

The series WA/WAU Roots vacuum pumps are provided with directly flange-mounted air-cooled standard threephase motors. The oiled radial sealing rings of the RUVAC WA/WAU for sealing the shaft against the atmosphere are made of FPM (fluor caoutchouc).

The WS/WSU series pumps are driven by air or water-cooled canned motors.

Roots vacuum pumps of the series WAU/WSU are provided with an additional integrated pressure equalization line and a differential pressure valve.

Pumps from these series are supplied with a vertical pumping action as standard.

RUVAC WS with FC

This type of pump is equipped with an integrated frequency converter fitted directly to the canned motor. The frequency converter has been specially matched to the pump.

The main characteristics of the RUVAC WS are:

Simulation of a pressure equalisation line

The frequency converter has been matched to the pump so that the possibility of mechanically overloading it is excluded. In the case of a pressure difference which is too high, the rotational speed of the pump is automatically reduced until its load drops in to the permissible range.

Operation at any rotational speeds

The frequency converter is equipped with a 0 to 10 V signal input and is thus in a position to control the rotational speed of the pump.

Increasing the pumping speed

The pump is prepared to handle a maximum rotational speed of 6000 rpm so that the frequency converter permits an increase in the nominal pumping speed of up to 100%.

Note

Please enquire about possibly existing usage limits (process dependent).

RUVAC WSLF

The pumps of these series are especially adapted Roots vacuum pumps from the RUVAC WS series which are intended for operation with gas lasers.

They are driven by a canned motor so that a shaft seal for sealing against atmospheric pressure is not required.

Air-cooled series with nominal pumping speeds of 1000 m³ x h⁻¹ (589 cfm) are available.

The RUVAC WSLF series with increased motor ratings is intended for operation in connection with frequency converters.

These pumps are available with nickelplated or plasma-nitrated surface as standard.

All pumps of these series are supplied with a horizontal pumping action.

Vertical pumping action is available upon request.

RUVAC RA

RA series Roots vacuum pumps are equipped with a directly flange-mounted three-phase motor (RA 13000 via V-belt drive).

Backing Pumps

The backing pumps from Oerlikon Leybold Vacuum listed in the following are recommended for connection to the RUVAC Roots vacuum pumps:

- Rotary vane vacuum pumps
 - TRIVAC B with pumping speeds between 16 and 65 m³ x h⁻¹ (9.4 and 38.3 cfm)
 - SOGEVAC with pumping speeds between 16 and 1200 m³ x h⁻¹ (9.4 and 707 cfm)
- Dry compressing piston vacuum pumps
 - ECODRY M with pumping speeds between 38 and 48 m³ x h⁻¹ (22 and 28 cfm)
- Dry compressing screw vacuum admud
 - SCREWLINE SP250 and SP630 with pumping speed of 250 and $630 \text{ m}^3 \text{ x h}^{-1}$ (147 and 371 cfm)
- Rotary piston vacuum pumps
 - E and DK with pumping speeds between 200 and 250 m³ x h⁻¹ (117.8 and 147.3 cfm)
- Roots vacuum pumps with pre-inlet cooling
 - RUVAC RAV G with pumping speeds between 250 and 8100 m³ x h⁻¹ (147.3 and 4770.9 cfm)
- Liquid ring vacuum pumps upon request

Accessories

Frequency Inverter RUVATRONIC RT 5

The electronic frequency inverters RUVATRONIC RT 5/251 to 5/16 000 have been designed specially for use in connection with Oerlikon Leybold Vacuum Roots pumps of the RUVAC

For each Roots vacuum pump size, a matching frequency inverter is available.

The main characteristics of the **RUVATRONIC RT 5 are:** Simulation of a pressure equalisation line

The software of the frequency inverters is adapted to each pump and ensures that the risk of mechanically overloading the pump can be excluded. In the case of too high pressure differences, the rotational speed will be decreased automatically until the load is reduced to within the pump's limits. RUVAC Roots vacuum pumps of the types WA, WS and RA (without pressure equalisation line) can be switched on together with the forepump at atmospheric pressure. Through this, the pumpdown time can be reduced drastically. The minimum pumping speed of the backing pump needs to be considered in this case.

In connection with this kind of operation, the minimum pumping speed of the backing pump needs to be observed.

Pump	Required pumping speed for the backing pump
WA/WS 251	50 m ³ /h (29 cfm)
WA/WS 501	100 m ³ /h (59 cfm)
WA/WS 1001	200 m ³ /h (118 cfm)
WA/WS 2001	410 m ³ /h (241 cfm)
RA 3001	650 m ³ /h (383 cfm)
RA 5001	930 m ³ /h (547 cfm)
RA 7001	1250 m ³ /h (736 cfm)
RA 9001	3240 m ³ /h (1907 cfm)

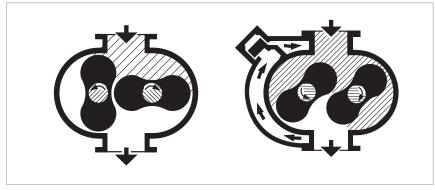
Operation at up to 3 predefined speeds

Via floating contacts, the pump can be operated at one of the 3 predefined speeds. Switching over to another predefined speed is possible during operation.

Operation at any rotational speed

With a 0 to 10 V signal, any speed can be predefined to operate the pump between the minimum and maximum rotational speed. The software reliably ensures that the rotational speed cannot drop below the minimum speed or exceed the maximum speed.

Increase in the pumping speed


By operating the Roots vacuum pumps at frequencies over 50 Hz, the nominal pumping speed of the pumps can be increased. Depending on the type of pump, an increase between 20 and 100% is possible.

Please enquire about possible application limitations (process dependent).

Dust Separators and Dust Filters

Vacuum processes with a high particle count or involving significant quantities of dust require special measures for protecting the vacuum pumps.

Dust separators and dust filters can be found in chapter "Accessories" of Catalog Section C08.

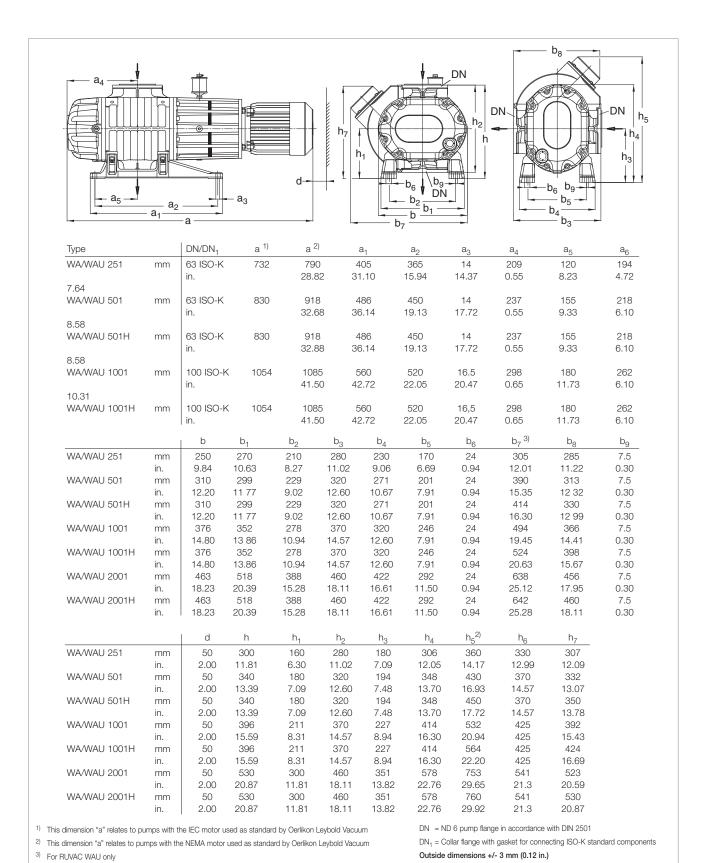
Schematic section through a RUVAC WA/WS (left) and a RUVAC WAU/WSU (right)

Products

RUVAC WA/WAU Roots Vacuum Pumps with Air-Cooled Flange-Mounted Motors

RUVAC WAU 2001 single-stage Roots vacuum pump shown with ISO-K 160 collar flanges

Advantages to the User


- Two air-cooled series, each with four models
- Reliable and trouble-free
- Sealing rings with their housing can be readily replaced
- Shaft seals and elastomer seals made of FPM/Viton
- Air-cooled standard motors in accordance with IEC dimensions eq. NEMA dimensions
- Easy to exchange with custom
- Integrated pressure equalization line for protection against overloading at high pressures on WAU models
- Pumping direction may be changed as required
- ATEX versions compliant to 94/9/EC possible

Typical Applications

- For oil-free compression of gases and vapors in combination with a backing pump
- Short cycle pumping processes also in the presence of large quantities of gas and vapor

Supplied Equipment

- RUVAC WA/WAU are supplied as standard for a vertical pumping action, horizontal pumping action upon request
- Mineral oil N 62 is used as standard
- Gasket in the intake flange with dirt
- The required oil filling is included in separate bottles

Dimensional drawing for the RUVAC WA/WAU pumps

Technical Data WA/WAU 251 WA/WAU(H) 501

	50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m ³ x h ⁻¹ (cfm	253.0 (149.0)	304.0 (179.0)	505.0 (297.4)	606.0 (357.0)
Max. pumping speed m ³ x h ⁻¹ (cfm with backing pump TRIVAC SOGEVAC	D 65 B	251.0 (148.0) D 65 B	410.0 (241.0) - SV 200	530.0 (312.0) - SV 200
Ultimate partial pressure ²⁾ mbar (Torr) < 2 x 10 ⁻⁵ (< 1.5 x 10 ⁻⁵)	< 2 x 10 ⁻⁵ (< 1.5 x 10 ⁻⁵)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)
Ultimate total pressure ²⁾ mbar (Tori) < 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)
Permissible cut-in pressure ²⁾ RUVAC WA mbar (Torr	90.0 (67.5)	60.0 (45.0)	100.0 (75.0)	80.0 (60.0)
Max. permissible pressure difference during continuous operation ³⁾ mbar (Torr	80.0 (60.0)	80.0 (60.0)	80.0 (60.0)	80.0 (60.0)
Main supply IEC motor (ATB) $^{4)}$ Δ / Y NEMA motor (US version) $^{4)}$ Δ / Y	220-240 / 380-420 230 / 400	220-277 / 380-480 200-230 / 460	220-240 / 380-420 230 / 400	220-277 / 380-480 200-230 / 460
Thermal class	F	F	F	F
Motor power kW (hp	1.1 (1.5)	1.1 (1.5)	2.2 (3.0)	2.2 (3.0)
Nominal speed, approx. (50/60 Hz) rpn	3000/3600	3000/3600	3000/3600	3000/3600
Max. permissible speed rpn	n 3600	3600	3600	3600
Type of protection	9 55	55	55	55
Oil filling for the bearing chamber ⁵⁾ vertical pumping action, approx.	1. Filling ⁶⁾ / 2. Filling	1. Filling ⁶⁾ / 2. Filling	1. Filling ⁶⁾ / 2. Filling	1. Filling ⁶⁾ / 2. Filling
ا (qر horizontal pumping action, approx. ا (αر	0.65 (0.69) / 0.6 (0.63)	0.65 (0.69) / 0.6 (0.63)	0.9 (0.95) / 0.8 (0.85) 0.75 (0.79) / 0.7 (0.74)	0.9 (0.95) / 0.8 (0.85) 0.75 (0.79) / 0.7 (0.74)
Oil filling of the shaft sealing ring housing		0.6 (0.63)	1.0 (1.06)	1.0 (1.06)
Connection flanges ⁷⁾ Di		63 ISO-K 3" ANSI	63 ISO-K 3" ANSI	63 ISO-K 3" ANSI
Weight WA/WAU kg	-	85.0/89.0 (187.4/196.2)	128.0/133.0 (282.2/293.3)	128.0/133.0 (282.2/293.3)
Noise level ⁸⁾ dB(A) < 64	< 64	< 67	< 67

 $^{^{1)}\,}$ To DIN 28 400 and subsequent numbers

When using 2-stage backing pumps the ultimate pressures will be correspondingly lower

 $^{^{2)}}$ With double-stage rotary vane vacuum pump TRIVAC, resp. single-stage rotary vane vacuum pump SOGEVAC (Type of backing pump look at max. pumping speed).

³⁾ Applicable for ratio up to 1:10 between backing pump and Roots vacuum pump at 3000 rpm

⁴⁾ Motor voltage and current may deviate depending on the type of motor. Please always note the information on the nameplate

 $^{^{5)}\,}$ Authoriative, however, is the oil level at the oil-level glass

⁶⁾ After a complete disassembly

⁷⁾ US models ANSI flanges

 $^{^{8)}}$ At an operating pressure below < 10^{-1} mbar (< 0.75×10^{-1} Torr)

Technical Data WA/WAU (H) 1001 WA/WAU(H) 2001

	50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m ³ x h ⁻¹ (cfm	1000 (589)	1200 (707)	2050 (1207.5)	2460 (1449)
Max. pumping speed m³ x h⁻¹ (cfm with backing pump SOGEVAC		1000 (588) SV 300	1850 (1089) SV 630 F	2100 (1236) SV 630 F
Ultimate partial pressure ²⁾ mbar (Torr	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)
Ultimate total pressure ²⁾ mbar (Torr	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)
Permissible cut-in pressure ²⁾ RUVAC WA mbar (Torr	60.0 (45.0)	45.0 (33.5)	30.0 (22.5)	25.0 (18.5)
Max. permissible pressure difference during continuous operation ³⁾ mbar (Torr	80.0 (60.0)	80.0 (60.0)	50.0 (37.5)	50.0 (37.5)
Main supply IEC motor (ATB) $^{4)}$ Δ / Y NEMA motor (US version) $^{4)}$ Δ / Y N		220-277 / 380-480 200-230 / 460	- / 380-420 400 / -	- / 380-480 460 / -
Thermal class	F	F	F	F
Motor power kW (hp	4.0 (5.4)	4.0 (5.4)	7.5 (10.0)	7.5 (10.0)
Nominal speed, approx. (50/60 Hz) rpm	3000/3600	3000/3600	3000/3600	3000/3600
Max. permissible speed rpm	3600	3600	3600	3600
Type of protection IF	55	55	55	55
Oil filling for the bearing chamber ⁵⁾ vertical pumping action, approx.	1. Filling ⁶⁾ / 2. Filling			
I (qt horizontal pumping action, approx.	2.0 (2.11) / 1.8 (1.90)	2.0 (2.11) / 1.8 (1.90)		3.85 (4.07) / 3.6 (3.81)
I (qt	1.2 (1.27) / 1.1 (1.16)	1.2 (1.27) / 1.1 (1.16)	2.65 (2.75) / 2.4 (2.54)	2.65 (2.75) / 2.4 (2.54)
Oil filling of the shaft sealing ring housing I (qt	1.3 (1.37)	1.3 (1.37)	1.6 (1.69)	1.6 (1.69)
Connection flanges ⁷⁾ DN		100 ISO-K 4" ANSI	160 ISO-K 6" ANSI	160 ISO-K 6" ANSI
Weight WA/WAU kg		220.0/225.0 (485.1/496.1)	400.0/406.0 (882/895.2)	400.0/406.0 (882/895.2)
Noise level 8) dB(A	< 75	< 75	< 80	< 80

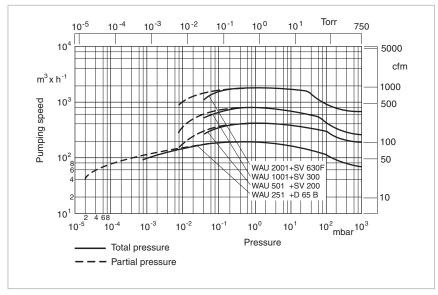
¹⁾ To DIN 28 400 and subsequent numbers

²⁾ With single-stage rotary vane vacuum pump SOGEVAC (Type of backing pump look at max. pumping speed). When using 2-stage backing pumps the ultimate pressures will be correspondingly lower

³⁾ Applicable for ratio up to 1:10 between backing pump and Roots vacuum pump at 3000 rpm

⁴⁾ Motor voltage and current may deviate depending on the type of motor. Please always note the information on the nameplate

⁵⁾ Authoriative, however, is the oil level at the oil-level glass


⁶⁾ After a complete disassembly

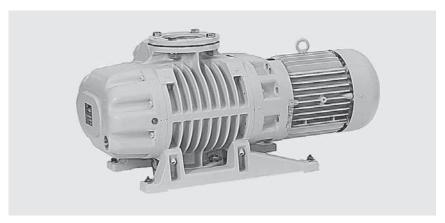
⁷⁾ US models ANSI flanges

 $^{^{8)}}$ At an operating pressure below < $10^{\text{-1}}$ mbar (< 0.75 x $10^{\text{-1}}$ Torr)

Ordering Information	WA/WAU	WA/WAU(H)	WA/WAU(H)	WA/WAU(H)
	251	501	1001	2001
Roots vacuum pump				
RUVAC WA (IEC motor)	Part No. 117 20	Part No. 117 30	Part No. 117 40	Part No. 117 50
RUVAC WA (NEMA motor, US version)	Part No. 917 20	Part No. 917 30	Part No. 917 40	Part No. 917 50
RUVAC WAU (IEC motor)	Part No. 117 21	Part No. 117 31	Part No. 117 41	Part No. 117 51
RUVAC WAU (NEMA motor, US version)	Part No. 917 21	Part No. 917 31	Part No. 917 41	Part No. 917 51
RUVAC WA, without motor	Part No. 117 24	Part No. 117 34	Part No. 117 44	Part No. 112 54
RUVAC WAU, without motor	_	Part No. 155 008	Part No. 112 17	Part No. 113 22
RUVAC WAU(H) (IEC motor),				
with special ACE vibration absorber	-	Part No. 118 31	Part No. 118 41	Part No. 118 51
RUVAC WS/WSU(H) seal kit	Part No. 194 60	Part No. 194 64	Part No. 194 68	Part No. 194 72
Flange adapter set, consisting of				
Flange adapter with screws, bolts,				
washers and nuts for ANSI flange	(3" ANSI)	(3" ANSI)	(4" ANSI)	(6" ANSI)
WA/WS pump	Part No. 200 03 179	Part No. 200 03 179	Part No. 200 03 180	Part No. 200 03 181
WAU/WSU pump	Part No. 200 03 179	Part No. 200 03 179	Part No. 200 03 180	Part No. 200 03 182
Frequency inverter RUVATRONIC	RT 5/251	RT 5/501	RT 5/1001	RT 5/2001
(see description in Section "General",	Part No.	Part No.	Part No.	Part No.
paragraph "Accessories")	500 001 381	500 001 382	500 001 383	500 001 384

¹⁾ Certified in accordance with ATEX Directive 94/9/EG, Category 3 (inside)

Pumping speed of the RUVAC WA/WAU, 50 Hz


Ordering Information

RUVAC WA/WAU (ATEX-Pumps for 50 Hz-Operation) 251 501 1001 2001

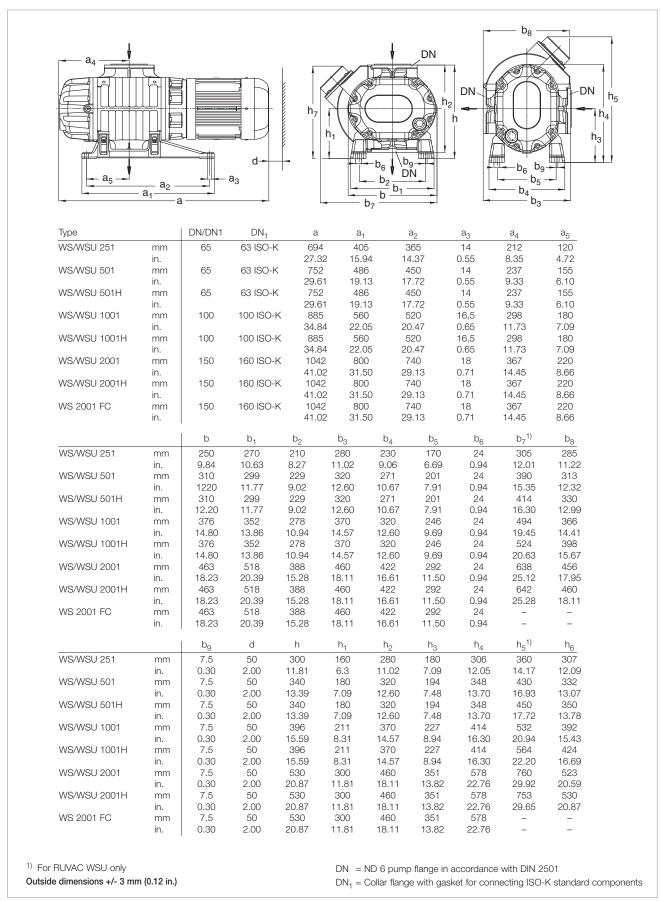
Roots vacuum pump				
RUVAC WAU				
ATEX Category 3 (inside) T3/T4	Part No. 155 021	Part No. 155 031	Part No. 155 041	Part No. 155 051
RUVAC WAU				
ATEX Category 3 (inside) T3/T4				
and (outside) T3	Part No. 155 027	Part No. 155 037	Part No. 155 047	Part No. 155 057
RUVAC WAU				
ATEX Category				
RUVAC WA	Part No. 155 029	Part No. 155 039	Part No. 155 049	Part No. 155 059
ATEX Category 3 (inside) T3/T4				
and (outside) T3	Part No. 155 026	Part No. 155 036	Part No. 155 046	Part No. 155 056
RUVAC WA				
ATEX Category 3 (inside) T4				
and (outside) T4	Part No. 155 028	Part No. 155 038	Part No. 155 048	Part No. 155 058
Further ATEX pumps,				
Category 2, for example	upon request	upon request	upon request	upon request

Note: EEx de IIC T4 and EEx e T3 compliant motors

RUVAC WS/WSU Roots Vacuum Pumps with Air-Cooled Canned Motors

Single-stage Roots vacuum pump RUVAC WSU 1001 shown with ISO-K 100 rotatable flanges

Advantages to the User


- Two series, each with four models
- Highly leak-tight air-cooled pumps driven by a air-cooled canned motor
- Lubricated with mineral oil. RUVAC WS/WSU PFPE with perfluoropolyether (PFPE)
- WS and WS PFPE pumps are identical except for the lubricant and the shipping package
- No thermal problems due to the speed independent cooling arrangement using a separately connected fan, thus no thermal problems at low speeds
- Over-temperature switch in the stator coil of the motor
- All elastomer seals made of FPM/ Viton
- Integrated pressure equalization line with differential pressure valve prevents overloading on WSU model
- RUVAC WS 251 to 2001 for use with a frequency inverter for a wide frequency range
- No shaft feedthrough to the atmosphere, thus particularly leak-tight
- Pumping direction may be changed as required

Typical Applications

- For applications which require a high pumping speed at pressures between 10⁻² and 10⁻⁴ mbar $(0.75 \times 10^{-2} \text{ and } 0.75 \times 10^{-4} \text{ Torr})$
- Used where the possibility of contamination due air ingress or pumped media leakage must be avoided
- Suction or pumping of high-purity or radioactive gases
- Is used in clean rooms were the air must not be recirculated by the motor's fan

Supplied Equipment

- The required oil or PFPE filling is included in separate bottle
- If no other type of oil is stated, then mineral oil N 62 is used as standard
- Purged with nitrogen for corrosion protection
- Gasket in the intake flange with integrated dirt sieve

Dimensional drawing for the RUVAC WS/WSU pumps

Technical Data WS/WSU 251 WS/WSU(H) 501

		50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m ³ x h ⁻¹	(cfm)	253 (149)	304 (179)	505 (297.4)	606 (357)
01 1	(cfm) RIVAC EVAC	210.0 (123.7) D 65 B	251.0 (148.0) D 65 B	410.0 (241.0) - SV 200	530.0 (312.0) - SV 200
Ultimate partial pressure ²⁾ mbar	(Torr)	< 2 x 10 ⁻⁵ (< 1.5 x 10 ⁻⁵)	< 2 x 10 ⁻⁵ (< 1.5 x 10 ⁻⁵)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)
Ultimate total pressure ²⁾ mbar	(Torr)	< 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)
Permissible cut-in pressure ²⁾ RUVAC WS mbar	(Torr)	90.0 (67.5)	60.0 (45.0)	100.0 (75.0)	80.0 (60.0)
Max. permissible pressure difference during continuous operation ³⁾ mbar	· (Torr)	80.0 (60.0)	80.0 (60.0)	80.0 (60.0)	80.0 (60.0)
Main supply Δ / Y Δ / Y	V V	200 / – 230 / 400	200-208 / – 265 / 460	200 / – 208-265 / 460	200-208 / – 265 / 460
Thermal class		F	F	F	F
Motor power, 50/60 Hz	W (hp)	1.1 (1.5) / 1.4 (1.9)	1.1 (1.5) / 1.4 (1.9)	2.2 (3.0) / 2.4 (3.3)	2.2 (3.0) / 2.4 (3.3)
Nominal speed, approx. (50/60 Hz)	rpm	3000/3600	3000/3600	3000/3600	3000/3600
Max. permissible speed	rpm	6000	6000	6000	6000
Type of protection	IP	20	20	20	20
Oil filling for the bearing chamber ⁴⁾ PFPE vertical pumping action, approx.		1. Filling ⁵⁾ / 2. Filling	1. Filling ⁵⁾ / 2. Filling	1. Filling ⁵⁾ / 2. Filling	1. Filling ⁵⁾ / 2. Filling
horizontal pumping action, appro	x.	0.6 (0.63) / 0.55 (0.58) 0.5 (0.53) / 0.45 (0.48)	0.6 (0.63) / 0.55 (0.58) 0.5 (0.53) / 0.45 (0.48)	0.85 (0.9) / 0.75 (0.79) 0.75 (0.79) / 0.7 (0.74)	
other oils vertical pumping action, approx. horizontal pumping action, appro		0.65 (0.69) / 0.6 (0.63)	0.65 (0.69) / 0.6 (0.63)	0.9 (0.95) / 0.8 (0.85)	0.9 (0.95) / 0.8 (0.85)
nonzoniai pumping action, appro	I (qt)	0.5 (0.53) / 0.45 (0.48)	0.5 (0.53) / 0.45 (0.48)	0.75 (0.79) / 0.7 (0.74)	0.75 (0.79) / 0.7 (0.74)
Connection flanges	DN	63 ISO-K	63 ISO-K	63 ISO-K	63 ISO-K
Weight WS/WSU	kg (lbs)	90.0/95.0 (198.5/209.5)	90.0/95.0 (198.5/209.5)	130.0/135.0 (286.7/297.7)	130.0/135.0 (286.7/297.7)
Noise level ⁶⁾	dB(A)	< 63	< 63	< 63	< 63

¹⁾ To DIN 28 400 and subsequent numbers

 $^{^{2)}\,}$ With double-stage rotary vane vacuum pump TRIVAC or single-stage rotary vane vacuum pump SOGEVAC (Type of backing pump look at max. pumping speed) When using 2-stage backing pumps the ultimate pressures will be correspondingly lower

³⁾ Applicable for ratio up to 1:10 between backing pump and Roots vacuum pump at 3000 rpm

⁴⁾ Authoriative, however, is the oil level at the oil-level glass

⁵⁾ After a complete disassembly

 $^{^{6)}}$ At an operating pressure < 10^{-1} mbar (< 0.75 x 10^{-1} Torr)

Technical Data

RUVAC WS/WSU (H) 1001 2001

50 Hz 60 Hz 60 Hz

WS FC 2001 1) until 100 Hz ANDEROL PFPE

					ANDEROL	PFPE
Nominal pumping speed ²⁾ m ³ x h ⁻¹ (cfm	(2415)1000 (589)	1200 (707)	2050 (1207.5)	2460 (1449)	4100 (2415)	4100
Max. pumping speed m ³ x h ⁻¹ (cfm	800 (470)	1000 (588)	1850 (1089)	2100 (1236)	3400 (2003)	3400 (2003
with backing pump SOGEVAC	SV 300	SV 300	SV 630 F	SV 630 F	-	-
SCREWLINE	_	_	-	-	SP 630	SP 630
Ultimate partial pressure 3) mba	< 8 x 10 ⁻³	< 8 x 10 ⁻³				
(Torr	(< 6 x 10 ⁻³)	(< 6 x 10 ⁻³				
Ultimate total pressure 3) mba	< 4 x 10 ⁻²	< 4 x 10 ⁻²				
(Torr	(< 3 x 10 ⁻²)	(< 3 x 10 ⁻²				
Possible cut-in pressure ³⁾						
RUVAC WS mbar (Torr	60.0 (45.0)	45.0 (33.5)	30.0 (22.5)	25.0 (18.5)	< 10 (< 7.5)	< 10 (< 7.5
Max. permissible pressure difference						
during continuous operation 4) mbar (Torr	80.0 (60.0)	80.0 (60.0)	50.0 (37.5)	50.0 (37.5)	40.0 (30.0)	35.0 (26.0)
Main supply						
Δ/Υ	200 / –	200-208 / –	200 / –	200-208 / –	400	400
Δ/Υ	230 / 400	265 / 460	230 / 400	265 / 460	400	400
Thermal class	F	F	F	F	F	F
Motor power, 50/60 Hz kV	4.0/4.4	4.0/4.4	7.5 /8.5	7.5/8.5	7.5 / 8.5	7.5 / 8.5
(hp	(5.4/6.0)	(5.4/6.0)	(10.0/11.6)	(10.0/11.6)	(10.0/11.6)	(10.0/11.6
Nominal speed, approx. (50/60 Hz) rpn	3000/3600	3000/3600	3000/3600	3000/3600	3000	3000
Max. permissible speed rpn	6000	6000	4200 ⁵⁾	4200 ⁵⁾	6000	6000
Type of protection to EN 60 529	20	20	20	20	20	20
Oil filling for the bearing chamber ⁶⁾	1. Filling ⁷⁾ /	1. Fillung ⁷⁾ /	1. Fillung ⁷			
PFPE	2. Filling	2. Filling	2. Filling	2. Filling	2. Fillung	2. Fillung
vertical pumping action, approx.	1.95 / 1.75	1.95 / 1.75	3.0 / 2.7	3.0 / 2.7	-	3,0 / 2,7
(qt	(2.06 / 1.85)	(2.06 / 1.85)	(3.17 / 2.85)	(3.17 / 2.85)		
horizontal pumping action, approx.	1.2 / 1.1	1.2 / 1.1	2.1 / 1.9	2.1 / 1.9	-	1.8 / 1.6
(qt	(1.27 / 1.16)	(1.27 / 1.16)	(2.22 / 2.00)	(2.22 / 2.00)		(1.9 / 1.7)
other oils						
vertical pumping action, approx.	2.0 / 1.8	2.0 / 1.8	3.85 / 3.6	3.85 / 3.6	3.3 / 3.0	-
(qt	2.11 / 1.90	2.11 / 1.90)	(4.07 / 3.81)	(4.07 / 3.81)	(3.49 / 3.17)	
horizontal pumping action, approx.	1.2 / 1.1	1.2 / 1.1	2.6 / 2.4	2.6 / 2.4	2.2 / 2.0	-
(qt	(1.27 / 1.16)	(1.27 / 1.16)	(2.75 / 2.54)	(2.75 / 2.54)	(2.33 / 2.11)	
Connection flanges DN	100 ISO-K	100 ISO-K	160 ISO-K	160 ISO-K	160 ISO-K	160 ISO-k
Weight WS/WSU k	228.0/233.0	228.0/233.0	458.0/465.0	458.0/465.0	465.0	465.0
(lbs	(502.7/513.8)	(502.7/513.8)	(1009.9/1025.3)	(1009.9/1025.3)	(1025.3)	(1025.3)
Noise level ⁸⁾ dB(A) < 68	< 68	< 72	< 72	< 72	< 72

 $^{^{1)}}$ FC = frequency controlled motor, max. operating pressure of 1013 mbar (760 Torr)

 $^{^{2)}\,}$ To DIN 28 400 and subsequent numbers

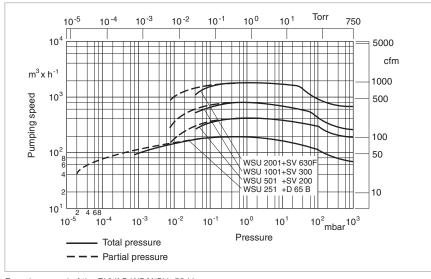
³⁾ With single-stage rotary vane vacuum pump SOGEVAC or dry compressing vacuum pump SCREWLINE (Type of backing pump look at max. pumping speed)

When using 2-stage backing pumps the ultimate pressures will be correspondingly lower

 $^{^{4)}\,}$ Applicable for ratio up to 1 : 10 between backing pump and Roots vacuum pump at 3000 rpm

⁵⁾ Also 6000 rpm upon order

 $^{^{\}rm 6)}$ Authoriative, however, is the oil level at the oil-level glass


⁷⁾ After a complete disassembly

 $^{^{8)}}$ At an operating pressure $< 10^{-1}$ mbar ($< 0.75 \times 10^{-1}$ Torr)

WS/WSU WS/WSU(H) WS/WSU(H) WS FC1)

Ordering Information	WS/WSU	WS/WSU(H)	WS/WSU(H)	WS/WSU(H)	WS FC ¹⁾
Ordering information	251	501	1001	2001	2001
Roots vacuum pump					
RUVAC WS	Part No.	Part No.	Part No.	Part No.	
	117 22	117 32	117 42	117 52	_
RUVAC WSU	Part No.	Part No.	Part No.	Part No.	
	117 23	117 33	117 43	117 53	_
RUVAC WS PFPE	Part No.	Part No.	Part No.	Part No.	
	117 27	117 37	117 47	117 57	_
RUVAC WSU PFPE	Part No.	Part No.	Part No.	Part No.	
	117 28	117 38	200 00 763	200 03 123	_
RUVAC WSU PFPE (US version)			Part No.		
,	_	_	917 48	_	_
RUVAC WS 2001, ANDEROL 555				Part No.	
(max. 100 Hz)	_	_	_	167 007	_
RUVAC WS 2001, PFPE				Part No.	
(max. 100 Hz)	_	_	_	150 95	_
RUVAC WSU 2001, ANDEROL 555				Part No.	
(max. 100 Hz)	_	_	_	150 96	_
RUVAC WS FC, ANDEROL 555					Part No.
	_	_	_	_	155 020
RUVAC WS FC, PFPE					Part No.
	_	_	_	_	155 030
RUVAC WSU(H)	_	_	_	Part No.	
with special ACE vibration absorber	_	118 33	118 43	118 53	_
DINAC WCAMCHAD and bit	Part No.	KatNr	Part No.	Part No.	Part No.
RUVAC WS/WSU(H) seal kit	194 62	194 66	194 70	194 74	194 74
	194 62	194 00	194 70	194 / 4	194 /4
Flange adapter set, consisting of					
flange adapter with screws, bolts,					
washers and nuts for ANSI flange	(3" ANSI)	(3" ANSI)	(4" ANSI)	(6" ANSI)	(6" ANSI)
•	Part No.				
WA/WS pump	200 03 179	200 03 179	200 03 180	200 03 181	200 03 181
• •	Part No.	Part No.	Part No.	Part No.	
WAU/WSU pump	200 03 179	200 03 179	200 03 180	200 03 182	-
Frequency inverter RUVATRONIC	RT 5/251	RT 5/501	RT 5/1001	RT 5/2001	_
(see description in Section "General",	Part No.	Part No.	Part No.	Part No.	
paragraph "Accessories")	500 001 381	500 001 382	500 001 383	500 001 384	_
paragraph Accessories ;	200 000				

¹⁾ FC = Frequency Controlled Motor

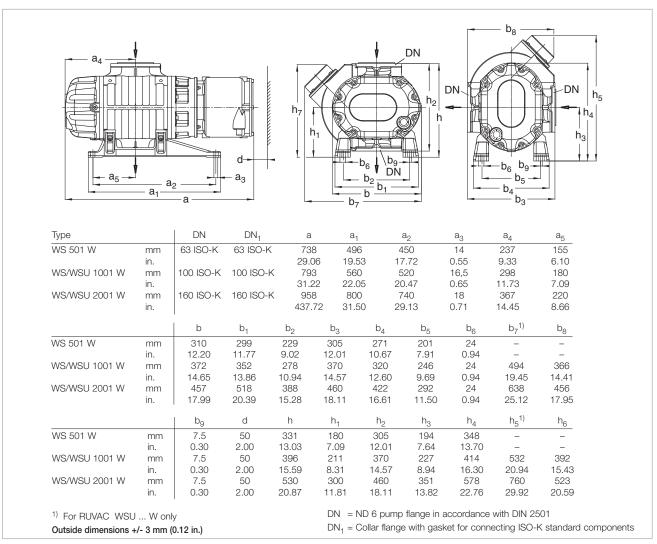
Pumping speed of the RUVAC WS/WSU, 50 Hz

Notes	

RUVAC WS/WSU (W) PFPE Roots Vacuum Pumps with Water-Cooled Canned Motors

Single-stage Roots vacuum pump RUVAC WS 501 W shown with ISO-K 63 rotatable flanges

Advantages to the User


- Two series, each with four models
- Highly leak-tight air-cooled pumps driven by a water-cooled canned motor
- RUVAC WS/WSU(W) PFPE lubricated with perfluoropolyether (PFPE)
- WS and WS PFPE pumps are identical except for the lubricant and the shipping package
- No thermal problems due to the speed independent cooling arrangement using a separately connected fan, thus no thermal problems at low speeds
- Over-temperature switch in the stator coil of the motor
- All elastomer seals made of FPM/ Viton
- Integrated pressure equalization line with differential pressure valve prevents overloading on WSU model
- RUVAC WS 251 to 2001 for use with a frequency inverter for a wide frequency range
- No shaft feedthrough to the atmosphere, thus particularly leaktight
- Pumping direction may be changed as required

Typical Applications

- For applications which require a high pumping speed at pressures between 10⁻² and 10⁻⁴ mbar $(0.75 \times 10^{-2} \text{ and } 0.75 \times 10^{-4} \text{ Torr})$
- Used where the possibility of contamination due air ingress or pumped media leakage must be avoided
- Suction or pumping of high-purity or radioactive gases
- Is used in clean rooms were the air must not be recirculated by the motor's fan

Supplied Equipment

- The required oil or PFPE filling is included in separate bottle (excep tions are marked)
- PFPE is used as standard
- Purged with nitrogen for corrosion protection
- Gasket in the intake flange with integrated dirt sieve

Dimensional drawing for the RUVAC WS/WSU(W) PFPE pumps

Technical Data

RUVAC WS 501 W

	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m ³ x h ⁻¹ (cfm)	505.0 (297.4)	606.0 (357.0)
$ \begin{array}{ll} \text{Max. pumping speed} & \text{m}^3 \text{ x h}^{\text{-1}} \text{ (cfm)} \\ \text{with backing pump} & \text{SOGEVAC} \end{array} $	410 (241) SV 200	530 (312) SV 200
Ultimate partial pressure ²⁾ mbar (Torr)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)
Ultimate total pressure ²⁾ mbar (Torr)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)
Permissible cut-in pressure ²⁾ RUVAC WS mbar (Torr)	100 (75)	80 (60)
Max. permissible pressure difference during continuous operation ³⁾ mbar (Torr)	80 (60)	80 (60)
$\begin{array}{ccc} \text{Main supply} & & \text{V} \\ \Delta / \text{Y} & & \text{V} \\ \Delta / \text{Y} & & \text{V} \end{array}$	200 / – 230 / 400	200-208 / – 265 / 460
Thermal class	F	F
Motor power, 50/60 Hz kW (hp)	2.2 (3.0) / 2.4 (3.3)	2.2 (3.0) / 2.4 (3.3)
Nominal speed, approx. (50/60 Hz) rpm	3000/3600	3000/3600
Max. permissible speed rpm	6000	6000
Type of protection IP	40	40
Cooling water connection with inside thread	1/4" 18 NPT	1/4" 18 NPT
Cooling water consumption, min. at inlet temperature, max. 25 °C (77 °F)	200	200
Max. permissible cooling water pressure bar	6	6
Oil filling for the bearing chamber 4) PFPE	1. Filling ⁵⁾ / 2. Filling	1. Filling ⁵⁾ / 2. Filling
vertical pumping action, approx.	0.85 (0.9) / 0.75 (0.79)	0.85 (0.9) / 0.75 (0.79)
horizontal pumping action, approx.	0.75 (0.79) / 0.7 (0.74)	0.75 (0.79) / 0.7 (0.74)
Connection flanges DN	63 ISO-K	63 ISO-K
Weight WS kg (lbs)	130.0 (286.7)	130.0 (286.7)
Noise level ⁶⁾ dB(A)	< 63	< 63

 $^{^{1)}\,}$ To DIN 28 400 and subsequent numbers

²⁾ With single-stage rotary vane vacuum pump SOGEVAC (Type of backing pump look at max. pumping speed).

When using 2-stage backing pumps the ultimate pressures will be correspondingly lower

 $^{^{\}rm 3)}$ Applicable for ratio up to 1 : 10 between backing pump and Roots vacuum pump at 3000 rpm

 $^{^{\}rm 4)}$ Authoriative, however, is the oil level at the oil-level glass

⁵⁾ After a complete disassembly

 $^{^{6)}}$ At an operating pressure < 10^{-1} mbar (< 0.75 x 10^{-1} Torr)

Technical Data	WS/WSU 1001 W	WS/WSU 2001 W

	50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m ³ x h ⁻¹ (cfm)	1000 (589)	1200 (707)	2050 (1207.5)	2460 (1449)
Max. pumping speed m ³ x h ⁻¹ (cfm) with backing pump SCREWLINE	830 (489) SP250	1000 (588) SP250	1780 (1044) SP630	2080 (1224) SP630
Ultimate total pressure ²⁾ mbar (Torr)	< 1 x 10 ⁻³ (< 7.5 x 10 ⁻⁴)	< 1 x 10 ⁻³ (< 7.5 x 10 ⁻⁴)	< 1 x 10 ⁻³ (< 7.5 x 10 ⁻⁴)	< 1 x 10 ⁻³ (< 7.5 x 10 ⁻⁴)
Permissible cut-in pressure ²⁾ RUVAC WS mbar (Torr)	50.0 (37.5)	20.0 (15.0)	23.0 (17.25)	18.0 (13.5)
Max. permissible pressure difference during continuous operation ³⁾ mbar (Torr)	80.0 (60.0)	50.0 (37.5)	50.0 (37.5)	50.0 (37.5)
$\begin{array}{ccc} \text{Main supply} & & & \text{V} \\ & \Delta / \text{Y} & & \text{V} \\ & \Delta / \text{Y} & & \text{V} \end{array}$	200 / – 230 / 400	200-208 / – 265 / 460	200 / – 230 / 400	200-208 / – 265 / 460
Thermal class	F	F	F	F
Motor power, 50/60 Hz kW (hp)	4.0/4.4 (5.4/6.0)	4.0/4.4 (5.4/6.0)	7.5 /8.5 (10.2/11.6)	7.5/8.5 (10.2/11.6)
Nominal speed, approx. (50/60 Hz) rpm	3000/3600	3000/3600	3000/3600	3000/3600
Max. permissible speed rpm	6000	6000	4200 ⁴⁾	4200 ⁴⁾
Type of protection IP	54	54	54	54
Cooling water connection with inside thresd	2x G 3/8"	2x G 3/8"	2x G 1/2"	2x G 1/2"
Cooling water consumption, min. at inlet temperature, max. 25 °C (77 °F)	90	90	150	150
Max. permissible cooling water pressure bar	7	7	7	7
Oil filling for the bearing chamber ⁵⁾	1. Filling ⁶⁾ / 2. Filling			
vertical pumping action, approx. I	1.95 / 1.75 (2.06 / 1.85)	1.95 / 1.75 (2.06 / 1.85)	3.0 / 2.7 (3.17 / 2.85)	3.0 / 2.7 (3.17 / 2.85)
horizontal pumping action, approx. I (qt)	1.2 / 1.1 (1.27 / 1.16)	1.2 / 1.1 (1.27 / 1.16)	2.1 / 1.9 (2.22 / 2.00)	2.1 / 1.9 (2.22 / 2.00)
Connection flanges DN	100 ISO-K	100 ISO-K	160 ISO-K	160 ISO-K
Weight WS/WSU kg (lbs)	228.0/233.0 (502.7/513.8)	228.0/233.0 (502.7/513.8)	458.0/465.0 (1009.9/1025.3)	458.0/465.0 (1009.9/1025.3)
Noise level ⁷⁾ dB(A)	< 68	< 68	< 72	< 72

¹⁾ To DIN 28 400 and subsequent numbers

 $^{^{2)}\,}$ With dry compressing vacuum pump SCREWLINE

⁽Type of backing pump look at max. pumping speed).

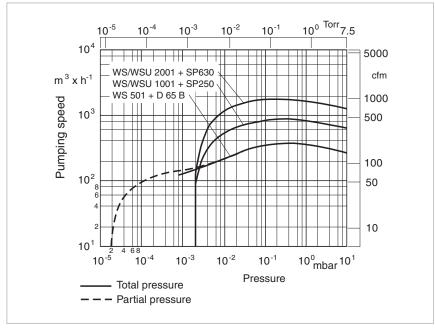
When using 2-stage backing pumps the ultimate pressures will be correspondingly lower

 $^{^{\}rm 3)}$ Applicable for ratio up to 1 : 10 between backing pump and Roots vacuum pump at 3000 rpm

⁴⁾ Also 6000 rpm upon order

 $^{^{5)}\,}$ Authoriative, however, is the oil level at the oil-level glass

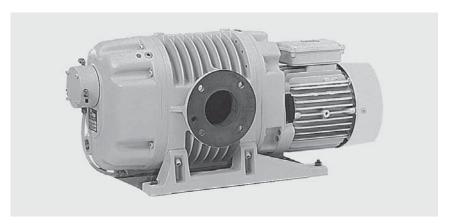
⁶⁾ After a complete disassembly


 $^{^{7)}\,}$ At an operating pressure $<10^{\text{-1}}\,$ mbar (< 0.75 x $10^{\text{-1}}\,$ Torr)

Ordering Information

RUVAC WS/WSU

	501 W	1001 W	2001 W
Roots vacuum pump			
RUVAC WS PFPE	Part No. 128 60	Part No. 155 042 ¹⁾	Part No. 155 052 ¹⁾
RUVAC WSU PFPE	-	Part No. 155 043 ¹⁾	Part No. 155 053 1)
RUVAC WS/WSU(H) seal kit	Part No. 194 66	Part No. 194 70	Part No. 194 74
Flange adapter set, consisting of			
flange adapter with screws, bolts,			
washers and nuts for ANSI flange	(3" ANSI)	(4" ANSI)	(6" ANSI)
	Part No.	Part No.	Part No.
WA/WS pump	200 03 179	200 03 180	200 03 181
	_	Part No.	Part No.
WAU/WSU pump		200 03 180	200 03 182
Frequency inverter RUVATRONIC	RT 5/501	RT 5/1001	RT 5/2001
(see description in Section "General",	Part No.	Part No.	Part No.
paragraph "Accessories")	500 001 382	500 001 383	500 001 384


¹⁾ Prepared for operation with PFPE, without PFPE filling

Pumping speed of the RUVAC WS/WSU (W) PFPE, 50 Hz $\,$

Notes	

RUVAC WSLF Roots Vacuum Pumps for Laser Gas Systems

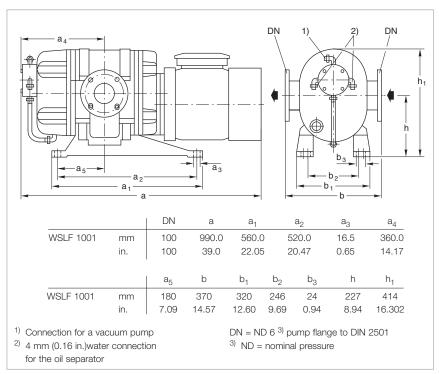
Roots vacuum pumps driven by canned motors are available for gas laser systems.

RUVAC WSLF 1001 LF Roots vacuum pump

Advantages to the User

- A gas mixture of helium, nitrogen and carbon monoxide is continuously circulated at a reduced system pressure
- High pumping speed from a small, quiet running pump
- Operation with a frequency inverter is possible
- Nickel-plated pump chamber surfaces
- Through an additional vacuum pump the bear-ing chambers may be evacuated to a pressure lower than the pressure within the pumping chamber of the RUVAC
- Water-cooled oil separating system
- Integrated oil separating system for extended maintenance intervals

Typical Applications


- Processing of ferrous and nonferrous materials like welding, cutting and surface refinement

Technical Note

- The gas circulation system must be very clean and entirely free of hydrocarbons

Supplied Equipment

- Horizontal pumping action as standard
- With oil pressure switch and oil drain facility
- The required oil filling is included separately (special oil ANDEROL® 2100 HTCL)
- Purged with nitrogen for corrosion protection

Dimensional drawing for the RUVAC WSLF pumps

Technical Data WSLF 1001

	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m ³ x h ⁻¹ (cfm)	1000 (589)	1200 (707)
Max. permissible pressure difference during continuous operation mbar (Torr)	80 (60)	80 (60)
Main supply Δ / Y V	200-230 / 400	200-265 / 460
Motor power kW (hp)	7.5 (10.2)	8.5 (11.6)
Nominal speed rpm	3000	3600
Max. permissible speed rpm	6000	6000
Type of protection IP	20	20
Oil filling of the bearing chambers I (qt)	1.2 (1.27)	1.2 (1.27)
Connection flange DIN 2501 DN	100	100
Weight kg (lbs)	275 (606.4)	275 (606.4)
Cooling water pressure bar (psi)	1 - 5 (14.5 - 72.5)	1 - 5 (14.5 - 72.5)
Cooling water throughput I x h ⁻¹ (cfm)	200.0 (0.9)	200.0 (0.9)
Hose connection for hose	6 x 1	6 x 1

Ordering Information

WSLF 1001

RUVAC WSLF Roots vacuum pump RUVAC WSLF 1001	Part No. 117 94
RUVAC WSLF seal kit	Part No. 194 70

¹⁾ To DIN 28 400 and subsequent numbers

RUVAC RA Roots Vacuum Pumps with Flange-Mounted Motors

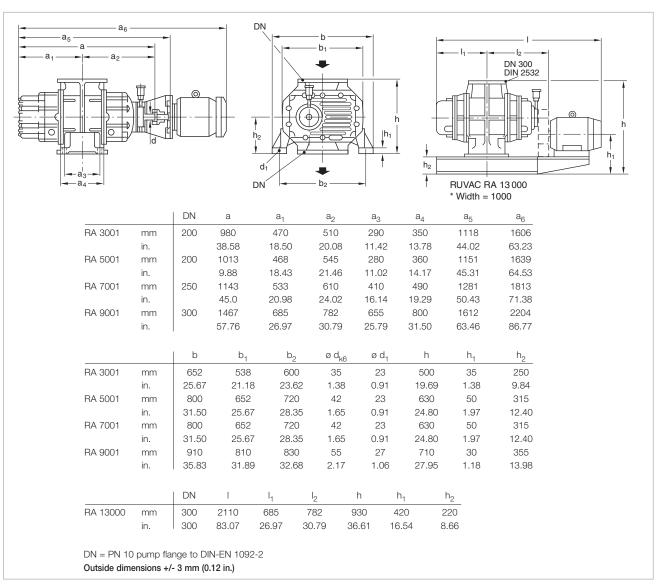
Roots vacuum pumps offering a high pumping speed.

RUVAC RA 5001 single-stage Roots vacuum pump

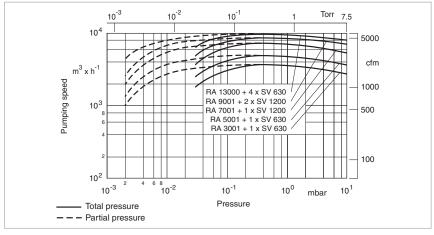
Advantages to the User

- Oil immersed radial shaft seals made of FPM for sealing against the atmosphere
- Use of universal IEC motors (50/60 Hz)
- The motors fulfil in Europe (50 Hz) the efficiency requirements in accordance with EFF1
- In the USA (60 Hz) the motors are UL approved and fulfil the efficiency requirements in accordance with **EPAC**
- If required with external pressure equalisation line and differential pressure valve so that the pump may be switched on jointly with the backing pump at atmospheric pressure
- Motors can easily be exchanged for special voltage motors. Explosion protected motors and motors for special main frequencies upon request
- Over-temperature switch in the stator coil of the motor
- Rugged dry compressing vacuum pump
- Most reliable even under rough operating conditions
- ATEX versions compliant to 94/9/EC possible

Typical Applications


- Large vacuum systems like sintering and annealing furnaces which require multi-stage pumpsets
- In large vacuum rectification systems Roots vacuum pumps with postcondensers for compressing of vapors

Custom Pumps


- If required the RA pumps are also available as C versions (chemical versions)
- Pumps made of special materials may be specified as well as pressure burst resistant pumps
- Custom designed pumps for pumping speeds of 250 m³/h to 2000 m³/h (147.3 to 1178 cfm)

Technical Note

For operation ordering of oil is necessary (see section "Miscellaneous")

Dimensional drawing for the RUVAC RA pumps

Pumping speed curves for the RUVAC RA, 50 Hz

Technical Data	RA 3001	RA 5001

		50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed 1)	m ³ x h ⁻¹ (cfm)	3845 (2264)	4625 (2724	5450 (3210)	6560 (3864)
Max. pumping speed with backing pump	m ³ x h ⁻¹ (cfm) SOGEVAC	3200 (1883) SV 630 F	3850 (2266) SV 630 F	4300 (2531) SV 630 F	5200 (3061) SV 630 F
Ultimate partial pressure ²⁾	mbar (Torr)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)
Ultimate total pressure ²⁾	mbar (Torr)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)
Max. permissible pressure d during continuous operat					
for < 3 min.	mbar (Torr) mbar (Torr)	53.0 (39.8) 93.0 (69.8)	53.0 (39.8) 93.0 (69.8)	53.0 (39.8) 93.0 (69.8)	53.0 (39.8) 93.0 (69.8)
Main supply Δ / Y Δ / Y Δ / Y	V V V	380 / 660 400 / 690 415 / -	440 / – 460 / – –	380 / 660 400 / 690 415 / –	440 / - 460 / - -
Thermal class		F	F	F	F
Motor power	kW (hp)	11.0 (15.0)	12.5 (17.0)	15.0 (20.4)	17.0 (23.1)
Nominal speed, 50 Hz	rpm	3000/3600	3000/3600	3000/3600	3000/3600
Max. permissible speed	rpm	3600	3600	3600	3600
Type of protection	IP	55	55	55	55
Oil filling, approx. vertical pumping action horizontal pumping action	l (qt) n l (qt)	7.0 (7.4) 3.5 (3.7)	7.0 (7.4) 3.5 (3.7)	12.0 (12.7) 5.4 (5.7)	12.0 (12.7) 5.4 (5.7)
Connection flange suction side ^{4, 5)} pressure side ^{4, 5)}	DN DN	200 200	200 200	200 200	200 200
Adapter flange package suction side pressure side	DN DN	250 ISO-K 160 ISO-K	250 ISO-K 160 ISO-K	250 ISO-K 160 ISO-K	250 ISO-K 160 ISO-K
Weight complete, approx.	kg (lbs)	580.0 (1278.9)	580.0 (1278.9)	770.0 (1697.9)	770.0 (1697.9)

Ordering Information RA 3001 RA 5001 50 / 60 Hz 50 / 60 Hz

Roots vacuum pump		
with motor, coupling and lantern ⁶⁾	Part No. 119 50	Part No. 119 53
RUVAC RA, ATEX version	upon request	upon request
Adapter flange package		
for suction and pressure side,		
including centering ring with integrated		
dirt sieve in the intake flange	Part No. 200 14 472	Part No. 200 14 472
Frequency inverter RUVATRONIC	RT 5/3001	RT 5/5001
(see description in Section "General", paragraph "Accessories")	Part No. 500 001 385	Part No. 500 001 386

¹⁾ To DIN 28 400 and subsequent numbers

 $^{^{2)}\,}$ With single-stage rotary vane vacuum pumps SOGEVAC

³⁾ Valid for a ratio of 1:5 between backing pump and Roots vacuum pump

⁴⁾ According to DIN 2532

⁵⁾ Without adapter flange to ISO-K flange

⁶⁾ Without oil filling

	common Data			NA 900 I		HA 13000
		50 Hz	60 Hz	50 Hz	60 Hz	50 Hz
Nominal pumping speed ¹⁾ r	m ³ x h ⁻¹ (cfm)	7337 (4321)	8819 (5194)	9567 (5635)	11484 (6762)	13000 (7657)
with backing pump	m ³ x h ⁻¹ (cfm) SOGEVAC	6100 (3590) SV 1200	7200 (4238) SV 1200	7500 (4414) 2 x SV 1200	8900 (5239) 2 x SV 1200	10000 (5890) -
or r	m ³ x h ⁻¹ (cfm)	-	-	-	_	2500 (1473)
Ultimate partial pressure ²⁾	mbar (Torr)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 8 x 10 ⁻³ (< 6 x 10 ⁻³)	< 1 x 10 ⁻² (< 7.5 x 10 ⁻³)	< 1 x 10 ⁻² (< 7.5 x 10 ⁻³)	< 1 x 10 ⁻² (< 7.5 x 10 ⁻³)
Ultimate total pressure ²⁾	mbar (Torr)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 5 x 10 ⁻² (< 3.8 x 10 ⁻²)	< 5 x 10 ⁻² (< 3.8 x 10 ⁻²)	< 5 x 10 ⁻² (< 3.8 x 10 ⁻²)
Max. permissible pressure diffe during continuous operation						
for < 3 min.	mbar (Torr) mbar (Torr)	53.0 (39.8) 93.0 (69.8)	53.0 (39.8) 93.0 (69.8)	66.0 (49.5) 133.0 (99.8)	66.0 (49.5) 133.0 (99.8)	53.0 (39.8) 93.0 (69.8)
Main supply △/Y	V V V	380 / 660 400 / 690 415 / -	440 / – 460 / – –	380 / 660 400 / 690 415 / –	440 / – 460 / – –	380 / 660 400 / 690 415 / -
Thermal class		F	F	F	F	F
Motor power	kW (hp)	18.5 (25.1)	21.0 (28.6)	22.0 (30.0)	25.0 (34.0)	30.0 (40.8)
Nominal speed, 50 Hz	rpm	3000/3600	3000/3600	1500/1800	1500/1800	2000
Max. permissible speed	rpm	3600	3600	1800	1800	2000
Type of protection	IP	55	55	55	55	55
Oil filling, approx. vertical pumping action horizontal pumping action	l (qt) l (qt)	12.0 (12.7) 5.4 (5.7)	12.0 (12.7) 5.4 (5.7)	11.0 (11.6) 7.6 (8.0)	11.0 (11.6) 7.6 (8.0)	11.0 (11.6) 7.6 (8.0)
Connection flange suction side ^{4, 5)} pressure side ^{4, 5)}	DN DN	250 250	250 250	300 300	300 300	300 300
Adapter flange package suction side pressure side	DN DN	250 ISO-K 250 ISO-K	250 ISO-K 250 ISO-K	320 ISO-K 250 ISO-K	320 ISO-K 250 ISO-K	320 ISO-K 250 ISO-K
Weight complete, approx.	kg (lbs)	840 (1852.2)	840 (1852.2)	1400 (3087.0)	1400 (3087.0	upon request
Ordering Information	'	RA	7001	RA 9	001	RA 13000
		50 /	60 Hz	50 / 6	60 Hz	50 Hz

Part No. 119 60

upon request

RT 5/7001

Part No. 500 001 387

RA 7001

RA 9001

Part No. 119 63

upon request

RT 5/9001

Part No. 500 001 388

RA 13000

4)	
To DIN 28 400 and	d subsequent numbers

(see description in Section "General",

with motor, coupling and lantern 6)

RUVAC RA, ATEX version

paragraph "Accessories")

Frequency inverter RUVATRONIC

Technical Data

upon request

RT 5/13000

Part No. 500 001 389

²⁾ With single-stage rotary vane vacuum pumps SOGEVAC

 $^{^{3)}\,}$ Valid for a ratio of 1 : 5 between backing pump and Roots vacuum pump

⁴⁾ According to DIN 2532

⁵⁾ Without adapter flange to ISO-K flange

⁶⁾ Without oil filling

Accessories

Pressure Switches

The RUVAC vacuum pumps may be switched on and off automatically through a pressure switch driven by a SV 110 switching amplifier and a contactor.

The pressure switch may be installed in the intake of the RUVAC using a screw-in adaptor, an elbow and two centering and two clamping rings.

Upon request the pressure switch may be set by Oerlikon Leybold Vaccum to a fixed value. Please state this pressure value in your order.

Ordering Information

Pressure Switches

Pressure switch	
PS 115, adjustable setting	Part No. 160 04
Pressure switch setting	Part No. 160 05
Accessories for fitting	
the PS 115pressure switch	
Screw-in adaptor DN 16 ISO-KF,	
M 16 x 1.5 mm (0.06 in.)	Part No. 168 40
Elbow DN 16 KF	Part No. 184 36
Centering ring DN 16 KF (2 are required)	Part No. 183 26
Clamping ring DN 16 KF (2 are required)	Part No. 183 41
SV 110 switching amplifier (for PS 114/115)	Part No. 160 78
Oil pressure switch for	
RUVAC WSLF 1001 and WS-PFPE	Part No. 194 82

Temperature Sensor PT 100

The temperature sensor measures the gas temperature at the centre of the RUVAC delivery flange.

Depending on the size of the RUVAC pump, respectively it's flange size, the PT 100 sensor is fitted at different positions.

Ordering Information

Temperature Sensor

Miscellaneous

Vacuum Pump Oils

Lubricating oils for rotary vacuum pumps need to fulfil demanding requirements. Their vapor pressure must be low also at high temperatures, water content and water uptake must be minimal. Their viscosity characteristics needs to be flat, lubricating properties need to be excellent and they must resist cracking upon being mechanically stressed.

All the vacuum pump oils listed in the following have been subjected in our factory laboratories to very comprehensive tests closely resembling the conditions encountered in practice by the pumps from the RUVAC series.

We therefore recommend the exclusive use of vacuum pump oils fully qualified by Oerlikon Leybold Vacuum so as to ensure optimum performance of the Oerlikon Leybold Vacuum pumps and also to ensure optimum oil change intervals.

Under vacuum conditions lubricating oils, especially those with additives may behave quite differently than expected. Additives may adversely affect the attainable ultimate pressure and may react with the media being pumped.

When using not suitably qualified third party oils, the oil change intervals and the performance of the vacuum pump may be reduced. Also unwanted deposits may occur which may even cause severe damage to the vacuum pump.

For these reasons please understand that we must make our warranty commitment dependent on the use of oils which have been qualified by us. Damages caused by the use of not suitably qualified lubricating oils are not covered by our warranty.

In order to adapt the pumps to the different applications of our customers, different types of oil are used in the RUVAC pumps.

Please note that owing to differing properties not all types of oil may be used in all pumps of the RUVAC series. If you can not find the combination of pump and oil you require please ask us for a quotation.

Lubricant Types

Mineral Oils

Mineral oils are products distilled and refined from crude oil. These do not consist of precisely defined compounds but rather consist of a complex mixture. The way in which the mineral oil is pre-treated and its composition are decisive as to the applications it will be suited for. Depending on the distribution of the hydrocarbons and the dominance of certain properties, mineral oils are grouped according to paraffin-base, naphthenic and aromatic. For the purpose of attaining especially low ultimate pressures, mineral oils must be selected on the basis of a core fraction.

The thermal and chemical resistance of mineral oils has been found to be adequate in the majority of applications. They offer a high degree of compatibility with elastomers and resistance to hydrolysis.

Synthetic Oils

Synthetic oils are produced by a chemical reaction. The group of synthetic oils includes liquids differing widely as to their chemical structure and composition. Correspondingly their physical and chemical properties differ considerably. Synthetic oils are used in those cases where special properties of the oil are required which can not be fulfilled by mineral oils.

The oils given in the following belong to the group of synthetic oils:

Ester Oils

Ester oils are organic compounds which excel especially through their high thermal resistance to cracking compared to mineral oils. Chemical resistance is generally quite good, but will depend on the type of ester oil. Elastomer compatibility and resistance against hydrolysis are not so good compared to mineral oils.

Perfluorinated polyether (PFPE)

These are oils which are only composed of carbon (C), fluorine (F) and oxygen atoms (O). The existing C-O and C-F bonds are highly stable. For this reason PFPE oils are practically inert against all chemical and oxidising influences.

Perfluorinated polyether will not polymerise under the influence of high energy radiation.

PFPE is non-flammable. Oerlikon Leybold Vacuum NC 1/14 has the approval of BAM (Federal Institute for Materials Research and Testing) for pumping of pure oxygen.

Perfluorinated polyether are used when pumping strongly reactive substances like oxygen (O₂), fluorine (F₂) and uranium hexafluoride (UF₆). Regarding Lewis acids (for example, boron trifluoride (BF₃), aluminum trichloride (AlCl₃)) they are not completely inert. Here reactions may take place at temperatures over 100 °C (212 °F).

Perfluorinated polyether are thermally highly stable. Thermal decomposition may only take place at temperatures of over 290 °C (554 °F).

Caution: Perfluorinated polyether will when decomposed - release toxic and corrosive gases: hydrogen fluoride (HF), carbonyl difluoride (COF₂). For this reason open fires must be avoided in the workspace where PFPE is being used. Do not smoke in the workspace where PFPE is being used.

Only suitably prepared pumps must be used in connection with perfluorinated polyether, since it is essential that the pumps be free of hydrocarbons.

Changing from one basic type of oil to PFPE must be left exclusively to authorised Service Centers. The pump will have to be fully disassembled and carefully cleaned. Gaskets and filters will have to be exchanged and suitable greases will have to be used.

Safety data sheets are available to professional users from: e-mail "documentation.vacuum@oerlikon.com" or Internet "www.oerlikon.com".

Overview Oils

Application Data	Special Oil N62	ANDEROL® 555
Application Data	Special Oil 1402	ANDEROL 333

Type of oil	Paraffin-base mineral oil, core faction, free of additives	Diester oil
Examples of areas of application and process media	Standard oil For pumping air, chemically inert permanent gases (noble gases, for example), water vapor	Used at elevated temperatures. Pumping of air, chemically inert permanent gases (noble gases, for example), carbon dioxide CO ₂ , carbon monoxide CO, aliphatic compounds (for example, methane CH ₄ , propane C ₃ H ₈ , ethylene C ₂ H ₄), organic solvent vapors
Remarks	The ultimate pressures stated in our catalogs are based on operation of the pump with N62 (except for the PFPE pumps)	
Elastomer compatibility FPM (Viton) NBR (Perbunan) 1) EPDM	Suited Conditionally suited Not suited	Suited Conditionally suited Not suited

ANDEROL® 555 **Technical Data Special Oil N62**

Viscosity			
at 40 °C (104 °F)	mm²/s	90	94
at 100 °C (212 °F)	mm²/s	10	9
Flash point	°C (°F)	> 255 (491)	250 (482)
Vapor pressure			
at 20 °C (68 °F)	mbar (Torr)	< 1 x 10 ⁻⁵ (< 0.75 x 10 ⁻⁵)	7 x 10 ⁻⁵ (5.3 x 10 ⁻⁵)
at 100 °C (212 °F)	mbar (Torr)	< 3 x 10 ⁻³ (< 2.3 x 10 ⁻³)	1.5 x 10 ⁻³ (1.1 x 10 ⁻³)
Density at 15 °C (59 °F)	g/ml	0.88 ²⁾	0.96
Pour point	°C (°F)	< -9 (< +16)	-42 (-44)
Middle molecular weight	g/mol	550	530

ANDEROL® 555 Ordering Information Special Oil N62

1 litre (1.06 qt)	Part No. 177 01	Part No. 200 10 272
5 litres (5.29 qt)	Part No. 177 02	Part No. 200 10 891
20 litres (21.14 qt)	Part No. 177 03	Part No. 200 00 193
180 kg (397.35 lbs)	Part No. 177 05	-

Please note that the technical data stated are only typical data. Slight variations from batch to batch must be expected. The technical data stated here can not be taken as assured properties.

ANDEROL® is a trademark of ANDEROL BV

 $^{^{1)}\,}$ Resistance to decomposing is very much dependent on the share of acrylonitrile in the NBR

 $^{^{2)}}$ at 20 °C (68 °F)

Application Data

ANDEROL® 2100 HTCL

NC 1/14

Type of oil	Polyolester	Perfluorinated polyether PFPE
Examples of areas of application and process media	Used in the RUVAC WSLF for operation in connection with gas lasers	For pumping strong oxidants like oxygen, O ₂ , ozone O ₃ , nitrogen oxides NOx and sulphur oxides (SO ₂ , SO ₃) as well as reactive substances like halogens (for example fluorine F ₂ , chlorine Cl ₂), hydrogen halides (for example hydrogen chloride HCl, hydrogen bromide HBr), uranium hexafluoride UF ₆ and conditionally Lewis acids (for example, boron trichloride BCl ₃)
Remarks		Use only PFPE modified pumps. For operation with PFPE we recommend the exclusive use of such pump types which are equipped with a split-pole motor Mixing with other types of oil must be absolutely avoided
Elastomer compatibility FPM (Viton) NBR (Perbunan) 1) EPDM	Suited Conditionally suited Not suited	Suited Conditionally suited Not suited

Technical Data

ANDEROL® 2100 HTCL

NC 1/14

Viscosity			
at 40 °C (104 °F)	mm²/s	94	47
at 100 °C (212 °F)	mm²/s	13	5
Flash point	°C (°F)	265 (509)	_ 2)
Vapor pressure			
at 20 °C (68 °F)	mbar (Torr)	5.0 x 10 ⁻⁵ (3.8 x 10-5)	$3.0 \times 10^{-7} (2.3 \times 10^{-7})$
at 100 °C (212 °F)	mbar (Torr)	$8.5 \times 10^{-4} (6.4 \times 10^{-4})$	$6.0 \times 10^{-4} (4.5 \times 10^{-4})$
Density at 15 °C (59 °F)	g/ml	0.92	1,89 ³⁾
Pour point	°C (°F)	-35 (-31)	-40 (-40)
Middle molecular weight	g/mol	No known	2500

Ordering Information

ANDEROL® 2100 HTCL

NC 1/14

1 litre (1.06 qt)	Part No. 200 14 333	Part No. 177 38
1 little (1.00 qt)	Part No. 200 14 333	Part No. 177 30

Please note that the technical data stated are only typical data. Slight variations from batch to batch must be expected. The technical data stated here can not be taken as assured properties

ANDEROL® is a trademark of ANDEROL BV

¹⁾ Resistance to decomposing is very much dependent on the share of acrylonitrile in the NBR

²⁾ Caution: Perfluorinated polyether will, when being decomposed at temperatures over 290 °C (554 °F), release toxic and corrosive gases For this reason open fires must be avoided in the workspace where PFPE is being used. Do not smoke in the workspace where PFPE is being used 3) at 20 °C (68 °F)

Only available for purchase in North and South America

Application Data	HE-200	HE-1600
------------------	--------	---------

Daneffia lanca mainanal all

Davids and a david and DEDE

Type of oil		Paraffin-base mineral oil, core faction, free of additives	Perfluorinated polyether PFPE
Examples of areas of application process media	on and	Standard oil for Oerlikon Leybold Vacuum USA For pumping air, chemically inert permanent gases (noble gases, for example), water vapor, solvent vapors in the case of laboratory pumps operated with cold traps	For pumping strong oxidants like oxygen, O ₂ , ozone O ₃ , nitrogen oxides NOx and sulphur oxides (SO ₂ , SO ₃) as well as reactive substances like halogens (for example fluorine F ₂ , chlorine Cl ₂), hydrogen halides (for example hydrogen chloride HCl, hydrogen bromide HBr), uranium hexafluoride UF ₆ and conditionally Lewis acids (for example, boron trichloride BCl ₃)
Remarks		The ultimate pressures stated in operation of the pump with HE-200 (except for the PFPE pumps)	Use only correspondingly modified pumps. For operation with PFPE we recommend the exclusive use of such pump types which are equipped with a split-pole motor
		Service life may be extended through the use of an oil filter	Mixing with other types of oil must be absolutely avoided
Elastomer compatibility FPM (Viton) NBR (Perbunan) ¹⁾ EPDM		Suited Conditionally suited Not suited	Suited Suited Suited
Technical Data		HE-200	HE-1600
Viscosity at 40 °C (104 °F)	mm²/s	58	-
Viscosity at 20 °C (68 °F)	mm²/s	_	140
Viscosity at 100 °C (212 °F)	mm²/s	9	
Viscosity at 99 °C (210 °F)	mm²/s	_	7
Flash point	°C (°F)	224 (435)	Not known ²⁾
Vapor pressure at 100 °C (212 °F)	mbar (Torr)	3.9 x 10 ⁻⁴ (2.9 x 10 ⁻⁴)	2.7 x 10 ⁻⁴ (2.0 x 10 ⁻⁴)
Pour point	°C (°F)	-10 (14)	-40 (40)
Middle molecular weight	g/mol	480	3000
Ordering Information		HE-200	HE-1600
1.0 litre (1.06 qt)		Part No. 98 198 006	-
3.8 litres (1 gal)		Part No. 98 198 007	-
18.9 litres (5 gal)		Part No. 98 198 008	-
208 litres (55 gal)		Part No. 98 198 010	-
0.9 kg (2 lbs)		-	Part No. 898 564-1

Please note that the technical data stated are only typical data. Slight variations from batch to batch must be expected. The technical data stated here can not be taken as assured properties

Part No. 898 564-2

Part No. 898 564-4

1.8 kg (4 lbs)

7.2 kg (16 lbs)

¹⁾ Resistance to decomposing is very much dependent on the share of acrylonitrile in the NBR

²⁾ Caution: Perfluorinated polyether will, when being decomposed at temperatures over 290 °C (554 °F), release toxic and corrosive gases For this reason open fires must be avoided in the workspace where PFPE is being used. Do not smoke in the workspace where PFPE is being used

Services

On-site Replacement of the Dynamic Seals (with oil N62) *)

The on-site replacement of the dynamic seals includes the following:

Oil change (standard oil N62), partial disassembly of the pump, replacement of the complete shaft seal, visual inspection of the subassemblies, electrical safety test, test run including check of the attained ultimate pressure levels (depending on the installation situation)

Ordering Information

On-site Replacement of the Dynamic Seals (with oil N62) *)

For pump	
WA/WAU 151/251	Part No. AS 1181 F
WA/WAU 501	Part No. AS 1182 F
WA/WAU 1001	Part No. AS 1183 F
WA/WAU 2001	Part No. AS 1184 F

Small On-site Maintenance (with oil N62) *)

The small on-site maintenance includes the following:

Oil change (standard oil N62), visual inspection of the subassemblies, electrical safety test, test run including check of the attained ultimate pressure levels (depending on the installation situation)

Ordering Information

Small On-site Maintenance (with oil N62) *)

For pump	
WA/WS 151/251	Part No. AS 1185 F
WA/WS 501	Part No. AS 1186 F
WA/WS 1001	Part No. AS 1187 F
WA/WS 2001	Part No. AS 1188 F

*) Notes on our on-site after sales service

The listed services include the costs for material and working hours on site for standard RUVAC pumps. Services for pump variants upon request.

Transportation and travelling expenses are invoiced at cost. All services refer to the repair of freely accessible and not contaminated vacuum components.

Complete Refurbishing at the Service Centre (with oil N62)

Complete refurbishing at the service centre includes the following:

Disassembly of the pump, cleaning of all individual components including visual inspection, machined reworking of the housing sections; if required rebalancing of the pair of impellers, replacement of the wearing parts, assembly of the pump including new seals and standard oil N62, electrical safety test, test run including check of the attained ultimate pressure levels.

Ordering Information

Complete Refurbishing at the Service Centre (with oil N62)

For pump	
WA 151/251	Part No. AS 1189
WA 501	Part No. AS 1190
WA 1001	Part No. AS 1191
WA 2001	Part No. AS 1192
WS 151/251	Part No. AS 1193
WS 501	Part No. AS 1194
WS 1001	Part No. AS 1195
WS 2001	Part No. AS 1196
WAU 151/251	Part No. AS 1197
WAU 501	Part No. AS 1198
WAU 1001	Part No. AS 1199
WAU 2001	Part No. AS 1200
WSU 151/251	Part No. AS 1201
WSU 501	Part No. AS 1202
WSU 1001	Part No. AS 1203
WSU 2001	Part No. AS 1204

Complete Refurbishing with Decontamination at the Service Centre (with oil N62)

Complete refurbishing with decontamination at the service centre includes the following:

Disassembly of the pump, cleaning and decontamination of all individual components, visual inspection of all components, machined reworking of the housing sections; if required rebalancing of the pair of impellers, replacement of the wearing parts, assembly of the pump including new seals and standard oil N62, electrical safety test, test run including check of the attained ultimate pressure levels.

Ordering Information

Complete Refurbishing with Decontamination at the Service Centre (with oil N62)

For pump	
WA 151/251	Part No. AS 1189 D
WA 501	Part No. AS 1190 D
WA 1001	Part No. AS 1191 D
WA 2001	Part No. AS 1192 D
WS 151/251	Part No. AS 1193 D
WS 501	Part No. AS 1194 D
WS 1001	Part No. AS 1195 D
WS 2001	Part No. AS 1196 D
WAU 151/251	Part No. AS 1197 D
WAU 501	Part No. AS 1198 D
WAU 1001	Part No. AS 1199 D
WAU 2001	Part No. AS 1200 D
WSU 151/251	Part No. AS 1201 D
WSU 501	Part No. AS 1202 D
WSU 1001	Part No. AS 1203 D
WSU 2001	Part No. AS 1204 D

Germany

Oerlikon Leybold Vacuum GmbH Bonner Strasse 498

D-50968 Cologne Phone: +49-(0)221-347 1234 Fax: +49-(0)221-347 1245 sales.vacuum@oerlikon.com www.oerlikon.com

Oerlikon Leybold Vacuum GmbH Sales Area North/Northeast

Branch Office Berlin Buschkrugallee 33 Obergeschoss D-12359 Berlin Phone: +49-(0)30-435 609 0 Fax: +49-(0)30-435 609 10 sales.vacuum.bn@oerlikon.com

Leybold Vacuum GmbH Sales Area South/Southwest Branch Office Munich

Sendlinger Strasse 7 D-80331 Munich Phone: +49-(0)89-357 33 9-10 Fax: +49-(0)89-357 33 9-33 sales.vacuum.mn@oerlikon.com service.vacuum.mn @oerlikon.com

Oerlikon Leybold Vacuum GmbH Sales Area West & Benelux Branch Office Cologne

Bonner Strasse 498 D-50968 Cologne Phone: +49-(0)221-347 1270 Fax: +49-(0)221-347 1291 sales.vacuum.kn@oerlikon.com

Leybold Vacuum GmbH Service Competence Center Emil-Hoffmann-Strasse 43

D-50996 Cologne-Suerth Phone: +49-(0)221-347 1439 Fax: +49-(0)221-347 1945 service.vacuum.kn@oerlikon.com

Oerlikon Leybold Vacuum GmbH Mobil Customer Service

Emil-Hoffmann-Strasse 43 D-50996 Cologne-Suerth Phone: +49-(0)221-347 1765 Fax: +49-(0)221-347 1944 service.vacuum.kn@oerlikon.com

Oerlikon Leybold Vacuum GmbH, Dresden

Zur Wetterwarte 50, Haus 304 D-01109 Dresden Service:

Phone: +49-(0)351-88 55 00 +49-(0)351-88 55 041 info.vacuum.dr@oerlikon.com

Europe

Belgium

Oerlikon Leybold Vacuum Nederland B.V. Belgisch bijkantoor

Leuvensesteenweg 542-9A B-1930 Zaventem Sales:

Phone: +32-2-711 00 83 +32-2-720 83 38 sales.vacuum.zv@oerlikon.com Service:

Phone: +32-2-711 00 82 +32-2-720 83 38 service.vacuum.zv@oerlikon.com

France

Oerlikon Leybold Vacuum France S.A. 7, Avenue du Québec Z.A. Courtaboeuf 1 - B.P. 42

F-91942 Courtaboeuf Cedex Sales and Service: Phone: +33-1-69 82 48 00 Fax: +33-1-69 07 57 38 sales.vacuum.or@oerlikon.com

Levbold Vacuum France S.A. Valence Factory

640, Rue A. Bergès - B.P. 107 F-26501 Bourg-lès-Valence Cedex Phone: +33-4-75 82 33 00 +33-4-75 82 92 69 info.vacuum.vc@oerlikon.com

Great Britain

Oerlikon Leybold Vacuum UK Ltd.

Silverglade Business Park Leatherhead Road UK-Chessington, Surrey KT9 2QL

Phone: +44-13-7273 7300 +44-13-7273 7301 sales vacuum In@oerlikon.com

Service: Phone: +44-20-8971 7030 +44-20-8971 7003 service.vacuum.ln@oerlikon.com

Oerlikon Leybold Vacuum Italia S.p.A. 8, Via Trasimeno

I-20128 Milano Sales:

Phone: +39-02-27 22 31 Fax: +39-02-27 20 96 41 sales.vacuum.mi@oerlikon.com

Service: Phone: +39-02-27 22 31 Fax: +39-02-27 22 32 17

Oerlikon Leybold Vacuum Italia S.p.A.

service.vacuum.mi@oerlikon.com

Field Service Base Z.I. Le Capanne I-05021 Acquasparta (TR) Phone: +39-0744-93 03 93 Fax: +39-0744-94 42 87 service.vacuum.mi@oerlikon.com Netherlands

Oerlikon Leybold Vacuum Nederland B.V. Proostwetering 24N

NL-3543 AE Utrecht Sales and Service: Phone: +31-(30) 242 6330 Fax: +31-(30) 242 6331 sales.vacuum.ut@oerlikon.com service.vacuum.ut@oerlikon.com

Spain

Sales:

Oerlikon Leybold Vacuum Spain, S.A.

C/. Huelva, 7 E-08940 Cornellà de Llobregat (Barcelona)

Phone: +34-93-666 46 16 +34-93-666 43 70 Fax. sales.vacuum.ba@oerlikon.com

Service: Phone: +34-93-666 49 51 Fax: +34-93-685 40 10 service.vacuum.ba@oerlikon.com

Oerlikon Leybold Vacuum Scandinavia AB

Box 9084 SE-40092 Göteborg Sales and Service: Phone: +46-31-68 84 70 Fax: +46-31-68 39 39 info.vacuum.gt@oerlikon.com Visiting/delivery address: Datavägen 57B SE-43632 Askim

Switzerland

Oerlikon Leybold Vacuum Schweiz AG Leutschenbachstrasse 55 CH-8050 Zürich

Sales:

Phone: +41-044-308 40 50 +41-044-302 43 73 sales.vacuum.zh@oerlikon.com Service:

Phone: +41-044-308 40 62 +41-044-308 40 60 service.vacuum.zh@oerlikon.com

America

Oerlikon **Leybold Vacuum USA Inc.** 5700 Mellon Road

USA-Export, PA 15632 Phone: +1-724-327-5700 +1-724-325-3577 Fax: info vacuum ex@oerlikon.com

Sales: Eastern & Central time zones Phone: +1-724-327-5700 Fax: +1-724-333-1217 Pacific, Mountain, Alaskan & Hawaiian time zones Phone: +1-480-752-9191 Fax: +1-480-752-9494

Service:

Phone: +1-724-327-5700 +1-724-325-3577

Leybold Vacuum GmbH

Phone: +49-(0)221-347 0

info.vacuum@oerlikon.com

+49-(0)221-347 1250

Bonner Strasse 498

D-50968 Cologne

Asia

P.R. China

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd.

Beichen Economic Development Area (BEDA), Shanghai Road Tianjin 300400 China

Sales and Service: Phone: +86-22-2697 0808 Fax: +86-22-2697 4061 Fax: +86-22-2697 2017 Fax: sales.vacuum.tj@oerlikon.com service.vacuum.tj@oerlikon.com

Oerlikon Leybold Vacuum

(Tianjin) Co. Ltd. Beichen Economic Development Area (BEDA), Shanghai Road Tianjin 300400 China

Sales and Service: Phone: +86-22-2697 0808 Fax: +86-22-2697 4061 +86-22-2697 2017 info.vacuum.tj@oerlikon.com service.vacuum.ti@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd.

Shanghai Branch: Add: No.33 76 Futedong San Rd. Waigaoqiao FTZ Shanghai 200131 China

Sales and Service: Phone: +86-21-5064-4666 Fax: +86-21-5064-4668 info.vacuum.sh@oerlikon.com service.vacuum.tj@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin)

International Trade Co. Ltd. Guangzhou Office and Service Center 1st F, Main Building Science City Plaza, No.111 Science Revenue, Guangzhou Science City (GZSC) 510663, Guangzhou, China

Sales: Phone: +86-20-8723-7873

Phone: +86-20-8723-7597 +86-20-8723-7875 info.vacuum.gz@oerlikon.com service.vacuum.tj@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd.

Beijing Branch: 1-908, Beijing Landmark Towers 8 North Dongsanhuan Road Chaoyang District Beijing 100004 China

Sales: Phone: +86-10-6590-7622 +86-10-6590-7607 sales.vacuum.bj@oerlikon.com

India

Oerlikon Leybold Vacuum India Pvt Ltd. EL-22, J Block

MIDC Bhosari Pune 411026 India

Sales and Service: Phone: +91-20-3061 60000 Fax: +91-20-2712 1571 sales.vacuum.pu@oerlikon.com service.vacuum.pu@oerlikon.com Japan

Oerlikon Leybold Vacuum Japan Co., Ltd. Headquarter 23-3, Shin-Yokohama

3-chome Tobu A.K. Bldg. 4th Floor Kohoku-ku Yokohama-shi 222-0033

Sales:

Phone: +81-45-471-3330 Fax: +81-45-471-3323 info.vacuum.yh@oerlikon.com sales.vacuum.yh@oerlikon.com

Oerlikon Leybold Vacuum Japan Co., Ltd.

Osaka Sales Office 5-13, Kawagishi-machi Suita-chi. Osaka 564-0037

Phone: +81-6-6393-5211 +81-6-6393-5215 info.vacuum.os@oerlikon.com sales.vacuum.os@oerlikon.com

Oerlikon Leybold Vacuum Japan Co., Ltd.

Tsukuba Technical Service Center Kogyo Danchi 21, Kasuminosato, Ami-machi, Inashiki-gun Ibaraki-ken, 300-0315

Service: Phone: +81-298 89 2841 +81-298 89 2838 info.vacuum.iik@oerlikon.com sales.vacuum.iik@oerlikon.com

Korea

Oerlikon Leybold Vacuum Korea Ltd.

3F. Jellzone 2 Tower, 159-4 Jeongja-Dong, Bundang-Gu Sungnam-Si, Gyeonggi-Do Korea 463-384

Sales:

Phone: +82-31 785 1367 Fax: +82-31 785 1359

623-7, Upsung-Dong Cheonan-Si Chungcheongnam-Do Korea 330-290

Service: Phone: +82-41 589 3035

+82-41 588 0166

Singapore

Oerlikon Leybold Vacuum Singapore Pte Ltd.

No.1, International Business Park B1-20B, The Synergy Singapore 609917

Sales and Service: Phone: +65-6303 7000 Fax: +65-67730 039 sales.vacuum.sg@oerlikon.com service.vacuum.sg@oerlikon.com

Taiwan

Oerlikon **Leybold Vacuum Taiwan Ltd.**No 416-1, Sec. 3
Chung-Hsin Rd., Chu-Tung

Hsin-Čhu, Taiwan, R.O.C. Sales and Service: Phone: +886-3-500 1688 Fax: +886-3-583 3999 sales.vacuum.hc@oerlikon.com service.vacuum.hc@oerlikon.com

